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ASYMPTOTIC BOUNDARY CONDITIONS 
FOR DISSIPATIVE WAVES: GENERAL THEORY 

THOMAS HAGSTROM 

ABSTRACT. An outstanding issue in the computational analysis of time-depen- 
dent problems is the imposition of appropriate radiation boundary conditions 
at artificial boundaries. In this work we develop accurate conditions based 
on the asymptotic analysis of wave propagation over long ranges. Employing 
the method of steepest descent, we identify dominant wave groups and consider 
simple approximations to the dispersion relation in order to derive local bound- 
ary operators. The existence of a small number of dominant wave groups may 
be expected for systems with dissipation. Estimates of the error as a function 
of domain size are derived under general hypotheses, leading to convergence 
results. Some practical aspects of the numerical construction of the asymptotic 
boundary operators are also discussed. 

1. INTRODUCTION 

Many interesting and important problems involving wave propagation in dis- 
sipative systems are posed on unbounded spatial domains. Examples from vis- 
cous or turbulent fluid dynamics include the modeling of internal flows, which 
leads to cylindrical domains, and the modeling of flows past bodies in the ocean 
or atmosphere, which may be posed on exterior domains. In these cases, even 
for high Reynolds numbers, viscous regions such as wakes and boundary layers 
may extend to the far field. Other examples are provided by reaction-diffusion 
equations, which have been used in models of combustion and population dy- 
namics. 

For purposes of numerical computation, an artificial boundary is often in- 
troduced. For long-time computations the interaction of the solution and the 
artificial boundary cannot be avoided. Striking instances of this occur in fluid 
dynamics when vortices or eddies reach the boundary, though more subtle ef- 
fects can also be important. These interactions may result in unacceptably large 
errors throughout the computational domain, especially if the system has insta- 
bilities. (For an example of this in a reaction-diffusion system see Hagstrom 
and Keller [1 1].) 
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The primary purpose of this work is to develop accurate boundary condi- 
tions to be imposed at such boundaries. We are also interested in establishing 
error estimates and convergence theorems, standard components of theoreti- 
cal numerical analysis which seem rarely to have been studied in the context 
of time-dependent partial differential equations on unbounded domains. For 
linear, separable differential operators, the exact boundary conditions may be 
represented in terms of appropriate eigenfunction expansions and transform 
variables. (See, e.g., Gustafsson and Kreiss [7].) For example, suppose x is the 
spatial coordinate normal to the boundary and the x-dependence of the trans- 
form solutions takes the form e I(S)X with s the dual variable to time and 1 
indexing a tangential normal mode. An exact relation at the boundary is given 
in transform space by 

(1) (aX -RIA(s)) ul = 0. 

Unfortunately, the expression of this relation in the original variables is typi- 
cally nonlocal in both space and time. For computational efficiency, the added 
storage and arithmetic operations required by the implementation of nonlocal 
conditions must, to the extent possible, be avoided. Ideally, local boundary 
operators would be used. These may be obtained using polynomial or rational 
approximations to the dispersion relation, A, (s), which in turn can generally be 
accurate only in a restricted neighborhood of transform space. 

An approach to the derivation of boundary conditions is, evidently, to iden- 
tify region(s) in transform space where polynomial or rational approximations 
are to be made and, then, to compute the coefficients of the approximation. In 
their pioneering study of hyperbolic problems, Engquist and Majda [5] consid- 
ered a particular high-frequency limit. For problems with dissipation, on the 
other hand, this limit is less likely to lead to accurate results. In this work we 
consider the use of asymptotic expansions of waves propagating over long dis- 
tances computed using the method of steepest descent. A consequence of the 
dissipative terms in the equations studied here is the association of growth or 
decay with each wave group. By locating minimum decay (maximum growth) 
rates, we locate appropriate regions for the required approximations. That is, 
we identify a small number of dominant wave groups, characterized by (S', ii), 
and compute local linear approximations to the dispersion relation, 

(2) Al (s) -1 (Si) + Al (3i) (s -si). 
Substituting this into (1) leads to a local operator. The complete asymptotic 
boundary condition is defined by the composition of a small number of these 
operators: 

(3) jj ( Al -.(Sd) - A;(l1) (i) -Si)) u = 0. 

In ??2 and 3, we present in detail the asymptotic analysis and the subsequent 
derivation of asymptotic boundary conditions. Some numerical considerations 
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are discussed in ?4. In ?5 we derive estimates of the error as a function of the 
size of the computational domain. These lead to the convergence of the solution 
of the problem on the truncated domain to the solution on the full domain. 

A primary motivation of this work is the development of accurate bound- 
ary conditions at artificial boundaries for the Navier-Stokes equations. This is 
carried out in [10] for incompressible flows, where extensive numerical experi- 
ments are described. Earlier applications of some of the ideas given here appear 
in [8, 9]. Boundary conditions for similar equations with constant coefficients 
have been derived by Halpern [12] and Halpern and Schatzman [13]. 

2. ASYMPTOTIC EXPANSIONS 

We consider, for definiteness, a general system of equations in a semiinfinite 
channel: 

au au au a 2u a 2u 
(4) - + U- + V- + Wu = A 2+B 2' at ax ayv ax2 ay 
(5) x > 0, Yo <Y <Y1 

These are supplemented by boundary and initial conditions defining a signalling 
problem: 

(6) u(x, y, 0) = 0, 
(7) Dou(x, yO, t) = 0, 
(8) DI u(x, Y1, t) = 0, 
(9) Eou(O, y, t) = g(y, t). 

We assume that the matrices DO, DI, and Eo are such that the problem is 
well-posed. We allow a stratified medium; that is, U, V, W, A, and B are 
functions of y. Note that equation (4) may be a far-field approximation to a 
problem whose coefficients are either nonlinear or functions of x. 

A representation of the solution of problem (4)-(9) may be obtained by 
means of Laplace transforms and eigenfunction expansions. The eigenvalue 
problem to be solved is: 

(10) sv1 +)l1Uv1 + Vdv I+WV Av+B d21 YO<Y<YI 

(11) DOV1(yo;s)=0, D1v1(y1;s)=0. 

For solutions, u, which grow at most exponentially in time we may restrict 
attention to eigenvalues, Al, satisfying 

(12) 9%(Al (s)) <0, 9(s) sufficiently large. 
We denote by X the set of indices of eigenvalues which meet the condition 
above and will refer to the function RI (s) as the dispersion relation. Let 

(00 
(13) gys=|e -Stg(y ,t) dt. 
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The assumption of well-posedness then implies the existence of a unique col- 
lection of functions cl(s) such that 

(14) E? (Z l(s)vl(Y; s)) (Y; s). 
1E-/ 

If c,(t)- is the inverse transform of Cl(s), a final expression for u may be 
obtained: 

(15) u(x, y, t) = uI(x, y, t), 
IEX 

(16) u,(x, y, t) c,(p)q,(x, y, t -p) dp, 

where 

(17) q,(x, y, t) = i f est+AI(s)xv1(y; s) ds 

and C is an appropriate inversion contour. 
To compute asymptotic expansions of u, valid for x large, we must evi- 

dently find expansions of q*. If (17) is evaluated along rays t = yx, x > 1, 
the exponent becomes 

(18) x(ys + Al(s)). 
In order to use the method of steepest descent, we seek points s* such that 

(19) I 

(20) Y1(y) > 0, 
(21) J(Y) = . 

Then, assuming that for 0 < Ymin < Y < Ymax < ox there exists s*(y) satisfying 
(19)-(21) with inversion contour, C, which can be deformed to the steepest 
descent path, we have: 

(22) *( y t) X(S*(tlx)(tlx)+Al(s*(tlx))) V1(Y; s*(t/x)) _? (22) q,(x, y, t 

(23) ~Ymin ? t/x < Ymax 

Substituting these into (16) formally yields an approximation of u1 for t > 

Yminx: 

r mminn 

(24) uj(x' ,yt)| 
a(,t7.x)cj(p)0,(x 

,y , t -p) dp. 
Jmax(O, tY7maxX) 

This representation has a simple interpretation: the signal data, cl, generates 
wave packets which propagate at their group velocity. At the point (x, t), 
x > 1, the solution is approximately the superposition of waves generated at 
times varying from t - Ymaxx for the slowest waves to t - Yminx for the fastest. 
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Now consider the specialization of these results to hyperbolic systems. In 
particular, we take the wave equation written as a first-order system: 

(25) A=B=W=O, U==( O), V ( 01) , 

and suppose that yo = 0 and y1 = 1 . For an appropriate choice of boundary 
conditions we have 

(26) O)= - + 
dA, -s 

(27) ds -S 

From (27) we see that group velocities ranging from 0 to 1 are associated with 
values of s = ico, Icol > 1in. Furthermore, 9%()) = 0; that is, the wave pack- 
ets do not decay exponentially as they propagate. These observations hold in 
general for the high frequencies of all hyperbolic problems. (See, e.g., [15].) 

For problems with dissipation, on the other hand, it may be possible to further 
simplify the results. Then, some exponential decay rate may be associated with 
each wave group. That is, 

(28) 9i(ys +* ( )) :0. 

For general signal data the large x behavior will be dominated by the wave 
group with least decay (which may be growth for problems with instabilities). 
Therefore, we seek y such that the expression above is maximized. Setting to 
zero the derivative of the decay rate with respect to y yields 

(29) 9( + dy (Y+,)) =0, 

which by (19) reduces to 

(30) 9(s*(y)) = 0. 

That is, assuming (19) defines a curve in s space, critical points of the decay 
rate occur as the curve crosses the imaginary axis. 

Suppose, for simplicity, that a unique solution of (30), y1, exists. (If s* 
is imaginary, its complex conjugate must also be used.) So long as this wave 
packet is excited by the initial data, we expect that the dominant contribution 
to the convolution integral defining ul(x, y, t) will come from a neighborhood 
of 
(31) (t-p)Vx = Y1. 

Introducing a local approximation to Xl we obtain 

ftYmX 'xeF ( t - p nvvd 

(32) ul(x, Y, t) -/ c,(p)e 
I F x + 1P, t-p) vi (y) dp, 

min(O, tymx) 1 

(33) F(Z, T)=_ es zA 
47z)3z./TI2tI I I 
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* Here we have 

(34) 4l = is~ +)Ll(*), 
(35) 1 ( * - =-(s ) =) 

dA_ * 

(36) A= 2 dS2 (s *) 

where s* is evaluated at 51 Also we assume that t > ylx. The expressions 
above represent a restriction to the neighborhood of a single point in the disper- 
sion relation. In what follows this restriction will enable us to find an asymptotic 
boundary condition which consists of local operators. Furthermore, techniques 
will be given for the numerical computation of the various quantities defined 
in (34)-(36). 

3. CONSTRUCTION OF THE BOUNDARY CONDITIONS 

We now suppose that an artificial boundary is located at x = Tr. The rep- 
resentation of the solution (1 5)-(16) may be manipulated to yield a variety of 
exact relationships at the boundary. For example, if the matrix A is positive 
definite, a characterization of the exact boundary conditions is that a collection 
of functions, r1(t), exists such that 

ff"(T U, y , t) ) :Et -'l( t (T, y , t - P))d (37) (=XQCYj)z rl(p)(aOxQCY P)dp. ~ U(T~ Y t) 1E./r FT ,t-P 

In many cases the unknown functions r1 may be eliminated to yield a direct 
relationship between u and @9 . Of course, this condition will be nonlocal in 
y and t and, in general, too difficult to use. 

If, however, the asymptotic expansion given in (32) is valid, it may be used 
to develop a local asymptotic boundary condition. The Laplace transforms of 
Xq, and q1 are related by ax 

(38) ad, (X, y; S) = /sq(, y ) 
The steepest descent result involves the restriction of the transforms to a neigh- 
borhood of s*(p,). An asymptotic expansion of the x-derivative may then be 
obtained by replacing Al(s) by its Taylor series about the critical value of s: 

(39) i l(5) _ i (s*(yJ)) + Al (S _ S*(yJ)) + A82(S _ S*(yJ))2+ 

Using, for example, the first two terms, we have 

(40) aqx A +l 2At) ql. 

These may be substituted into (3 ,J to finally obtain a condition on ul. The 
time-derivative is brought outside the integral to further simplify the expression. 
This involves the neglect of terms from the limits of integration, which should 
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be exWponentially small. The asymptotic boundary condition we propose is, then, 
given by 

(41) a = AO +A1 19 u1. 
A hierarchy of conditions may be obtained by use of more terms in the 

Taylor series. These would involve derivatives of higher order. Their stable 
implementation would require the use of Pade approximants, as discussed by 
Engquist and Majda [5]. For example, a potential approximation at the next 
order is 

(42) ( il 10 )) ( ( )) l =l (t- ) 

The condition derived involves only one normal mode, ul. We may, how- 
ever, apply it directly to u if / is such that 91(A4) is maximized. For problems 
where a small number of modes have similar minimum decay rates, a prod- 
uct boundary condition is used. Also, if the critical s* is imaginary, we must 
include its complex conjugate in the product. We have in general 

(43) a[17 (a- -4-1 a 
) (complex conjugate)] u = 0. 

We have never used more than two modes. 

4. NUMERICAL CONSIDERATIONS 

In order to apply the asymptotic boundary conditions derived above, we must 
find Y, as well as the first two terms of the Taylor series of Al. For fixed s, 
the substitution w = )Av in conjunction with an appropriate discretization of 
the y-derivatives leads to a generalized matrix eigenvalue problem: 

(44) M(s)r= ALr, r=Q(). 

This may be solved using standard linear algebra software which implements, 
say, the QZ algorithm [6]. An analysis of the discretization error is given by 
Kreiss [17]. The asymptotic expansion requires that s be imaginary and d 

be real. As s varies along the imaginary axis, the latter implies a maximum or 
minimum for 91(A). Our problem is, then, to maximize 9%().(s)) as s varies 
over the imaginaries. This is a line search problem for which many strategies 
have been developed, though they may be expensive to carry out. (See, e.g., 
Dennis and Schnabel [3].) For many of our examples, s = 0 has been the 
solution. A necessary condition for this is that E (0) be real and negative. This 
may be checked by solving (44) only once. 

Once the critical value of s has been found, we must compute Al . Differ- 
entiating (44) with respect to s yields 

dr (dL dM ) 
(45) (M-LAL)W-= TS -L--s I r. 
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Since the matrix on the left is singular, A1 = ds may be obtained from a 
compatibility condition. If r is a left null vector we have 

-TdM 

(46) r1 Fas- Tr - T r Lr 
The cost of this computation is typically negligible in comparison with the cost 
of finding the critical frequency. Expressions for more terms in the Taylor series 
can be similarly found. 

There are a variety of reasonable numerical implementations of the bound- 
ary conditions. For conditions involving derivatives of at most first order, many 
stable discretizations are known. Product boundary conditions (for wave equa- 
tions) are studied by Higdon [16]. He develops the useful principle of employing 
products of stable discretizations. We have successfully employed this proce- 
dure throughout our numerical experiments. 

5. ERROR ESTIMATES 

Estimating the error caused by the introduction of an artificial boundary can 
be broken up into two parts. The first is to estimate the residual resulting from 
the application of the boundary condition to the exact solution. The complete 
error estimate then follows from estimates of the solution of the initial-boundary 
value problem in terms of inhomogeneous boundary data. The latter is simply 
a proof of well-posedness. 

For reference we write down the problem satisfied by the error, e(x, y, t) . 

Problem 1. 

(47) Le = 0, (x, y) E (O, T) x (yO, Y1), 
(48) e(x, y, O) = O, 
(49) Dje(x, yj, t) = O, j = O, 1, 

(50) E0e(O, y, t) = O, 

(51) Be(T, y, t) = Bu(T, y, t). 

Here, L is the differential operator appearing in (4) and B is the asymptotic 
boundary operator appearing in (43). 

A general approach to the investigation of the effect of the boundary condi- 
tions on the well-posedness of an initial-boundary value problem is to freeze 
coefficients at each point of the boundary and to study solutions of the frozen- 
coefficient system. In particular, we must show that no solutions of the frozen- 
coefficient problem of the form 

(52) eKt+MX+iay 9K > O, 9 > O, 

are in the null space of the boundary operator. For problems with decay in the 
dominant wave groups, that is K/4 < 0 in (43), it is clear that an eigensolution 
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satisfying the conditions above cannot exist, as 

(53) (1- A - K) > 0. 

(Recall that Al is real and negative.) 
Translating this condition into a bonafide proof of well-posedness requires 

further assumptions on the coefficients of (4). Indeed, the conditions we have 
constructed may result in an overdetermined problem if A is rank-deficient. 
Complete discussions are given by Eidel'man [4] for the parabolic case and 
by Strikwerda [19] for incompletely parabolic systems, though in general their 
results require boundary operators of low order. See also the more stringent 
requirement of dissipativity introduced by Barry, Bielak, and MacCamy [1], 
which may be necessary for the estimates used below. We will simply assume 
that Problem 1 is well-posed. We introduce appropriate Sobolev norms in the 
interior, 11 " Jj(0 )x(y0,yj) ) and on the boundary, 11 I 10y,yj 1 and define 

(54) 11wi = 11w(x, , t)II(o)x(y0y1)dt, 

and, for functions of t, 

(56) Iwl =jIw(t)l dt. 

We then make: 

Assumption 1. There exists C > 0 independent of t such that 

(57) Il~~~~~~ell 1 < ClIBull , T' 

(In what follows we mean all constants to be independent of T unless other- 
wise stated.) 

The requirement that C be independent of T can easily be dropped, though 
we must be able to estimate its growth in order to estimate the rate of con- 
vergence of the solution on the truncated domain. For example, in the error 
analysis of asymptotic boundary conditions for second-order scalar hyperbolic 
equations in exterior domains, as given by Bayliss and Turkel [2] and Hariha- 
ran and Hagstrom [14], algebraic growth of C with T is encountered. For 
the problems under consideration, however, Assumption 1 is typically satisfied 
owing to the exponential decay of solutions. An interesting possibility is to use 
weighted norms in x, in which case C may decrease with increasing T. 

We proceed to estimate IIBuj jI t. We make a variety of simplifying assump- 
tions, as our main purpose is to extract the dependence of the error on T as well 
as to give the flavor of the necessary computations. Many of the assumptions 
could be relaxed somewhat, though their verification for any practical problem 
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is likely to be difficult. We freely quote error estimates from the asymptotic the- 
ory of integrals with large parameters. These may be found in any of a variety 
of texts on the subject, for example Sirovich [181. 

We make, then, the following assumptions: 

Assumption 2. For all l E X and all y E [0, xc) there exists a unique (up to 
complex conjugation) s*(y) satisfying (19), and the contour of integration in 
(17) can be deformed to the steepest descent path through s* without passing 
through singularities of the integrand. Furthermore, for T sufficiently large, 
DI (q* - 01) is absolutely integrable in y and the integral is uniformly bounded 
in 1, where D represents a derivative in t or x and i ? 2. 

Assumption 3. There exists 10 E X such that a unique Y'1 exists at which 
9%(ys* + Al(s*)) go attains a global maximum. If s*(Yi) = 0, then, for 
l =l, 3(s*(y)) =0 for all y in a neighborhood of Y. Furthermore, there 
exists c5 > 0 such that 91(ys* + Al (s*)) S go - a for all y and 1 $ l . 

Assumption 4. There exists z such that, for 0 < j ? 2, 

(58) f ez )h,, j(p) dp ? Ko < oc 

where 

(59) piz(p) = 9(s (P)p + 1(s (P) 

(60) hl,((p) = l& ) ( Is *(P)Ij + 1(5 (P)) l) 

(We will always take T > z.) 

Assumption 5. There exist K1 > 0, K2 > 0, and K3 > 0 such that 

(61) leA1 ? KIlclo I l 10, 

(62) ? K21CIq10I/ , 
(63) Icljll < K3j11uj10,o 

Assumptions 2-4 are constraints on the coefficients of equation (4). They are 
easily verified in the interesting special case of the advection diffusion equation 
with constant coefficients and the usual (e.g., Dirichlet or Neumann) conditions 
on the channel wall. Assumption 5 is in effect a restriction to signal data which 
excites the dominant wave group. If the data is such that only a certain wave 
group is excited, that information should be used to modify the asymptotic 
analysis. 

The main estimates are derived in the following collection of lemmas, whose 
proofs depend on the validity of Assumptions 2-5. 
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Lemma 1. There holds, as Tr - oc, 

(64) IjBqlj 11 t = O(1/T) lqlo 11 l r. 
Proof. We have, by our assumptions on the properties of the transforms, 

(65) IIq10II1,T = 110o111,T(1 + O(1/T)). 

Writing out the integral expression for 1101 0111, and introducing the change of 
variables p = t/ yields 

(66) 7f ef COS(Tg(p) + 6(p))Ih(p) dp. 

Here, 

(67) f (p) =91(s* (p)p + Al (s* (p))), 

(68) g(p) =2(s* (P)p + a (s* (P))), 

(69) h(p) = 11v10(.; S*(p))Il(yl) 

(70) = arg(A(s 1 (p))). 

Again, by assumption, f(p) has a maximum at p = po. The ap- 
proximation of this integral by Laplace's method is slightly complicated by the 
presence of the absolute value of the oscillatory term. There are two cases to 
consider. If s*(po) = 0, then, by Assumption 3, it is 0 in a neighborhood of 
pO, and by direct computation we find that g(p) is constant. Then Laplace's 
formula may be directly applied. If s*(po) # 0, then g'(po) = 3(s*) :# 0. Then 
the generalization of Laplace's formula given in Theorem 2 of the appendix 
applies. In each case the result is 

(71 ) 11010 11 1 T = Kel8 TA(l + O( l/T 1/2) 

where K isindependentof T. Similarly, asymptotic expansions of B(Kat, )ql 
can be computed. In particular, we have 

(72) lBqlo 1j,T = IIBOIO1Il T(l + 0(l/T)). 

As above, we consider the integral expression for IIB, 1I: 
00 

Tf(p) 
(73) -J e I cos(rg(p) + 0(p))Ih(p) dp. 

Here, f and g are as above, while 0 and h are determined by 

(74) h(p) = Iv(.; s*(P))ll(yoyl) IB(s*(p) , 0(s*(p)))I 

(75) 0(p) = arg(B(s* (p) Alo(s (P)))) - 1 arg(2i(s* (p))). 
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Again, we will compute an asymptotic approximation to this integral using 
Laplace's formula if s*(po) = 0, or Theorem 2 if it is not. We note that B 
has been chosen to have a simple zero at p = pO0, which implies that 

(76) h(p) = O(p -Po), P -P0. 

We thereby conclude 

(77) ||BOIO |1 T = O(1/T)II0IOII1,T' 

The conclusion of the lemma follows directly. 0 

Lemma 2. We have, as T -X o0, 

(78) IIBu 10II1T = O(I/T)IIUIOIII ,T 

Proof. By direct computation, 

(79) Bu 1 = c10 * Bq1o + boundary terms. 

The asymptotic analysis indicates that the boundary terms are exponentially 
small. We then have, using Lemma 1 and Assumption 5, 

(80) IIBu10II1 ,T : 
lo * Bqlo L ,T - Iclo I I 1lBqlo 101 ,T 

< O(1/T)IC1 IIq10IIIT I < O(1I/T)IIUIOIIL ,T 0 

Lemma 3. There exists tj > 0 such that 

(81) |IB(u - ui )II IT = O(e )IIulo III ,T 

Proof. We directly estimate IIB(u - u1 )II: 

(82) IIB(u - u 1)IL, T 
Zc * Bql <Klcl Ii I EJIB,11 ,T 

1010 T1 T li0 

where we have used Assumptions 2 and 5. From the integral representation of 
11011 we have 

( 8 3) E I|BO, II T < 7 E e i'@ l(p ) dp, 

where 

(84) fi (p) =9M(s * (p)p + Al (s * (p))), 
(85) h ( ) || ( * ( )) 1l IB(s* (p) . Al(s* (P))) | (85) h1(p) = IIv1(&; s*(p))II() I(s*(0 

However, by Assumptions 4 and 3, the expression on the right is bounded by 

(86) Ko ee(T-Z)(Io-6) 
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We hive, therefore, for some constant K4, 

(87) |IB(u-u1 )II1 u T < e (eTIioIciIi) 

By Assumption 5 and the asymptotic expansion of II qI computed in the proof 

of Lemma 1, the term in parentheses is bounded by u 1 I T. We have thus 

shown that tj > 0 can be chosen such that 

(88) |IB(u - u10)II = O(e T)IIUloII, T, 

completing the proof of the lemma. o 

Lemma 4. There exists K such that 
eTAO 

(89) IIBuIl, T < K r IIuI '1? 

Proof. We have, by Lemmas 2 and 3, 

(90) IlBull ,T - IIBu10111,T + IIB(u -U 0)IIIT 
< O(1I/T)IIUI III ,T 

Furthermore, using the asymptotic expansion of 1I 0111,T computed in the proof 

of Lemma 1, along with Assumption 5, we find 

(91) 11u10I II,T _ K5Iclo IlloIll ,T < K6eTI oIUIIIiO 

Combining these equations yields the statement of the lemma. o 

Finally, by combining Assumption 1 with Lemma 4 we obtain the desired 
error estimate: 

Theorem 1. Suppose e is the solution of Problem 1, and Assumptions 1-5 hold. 
Then for T sufficiently large there exists K independent of T and the data such 
that 

eTAO 

(92) Ilell <K T IIuIII,o. 

6. CONCLUDING REMARKS 

We have developed a general technique for the construction of asymptotic 
boundary conditions for problems with dissipative wave propagation. Theorem 
1 clearly implies the convergence of the solution on the truncated domain as 
T -X oc, if guo < 0. The factor of 1I/T, which is a direct consequence of the 
use of our asymptotic boundary conditions, is of importance when guo is small. 
Precisely such a situation occurs when our technique is applied to the incom- 
pressible Navier-Stokes equations for moderate to large Reynolds numbers. This 
is studied in detail in [10]. Applications to other problems in computational 
mechanics are also under consideration. 
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APPENDIX. ASYMPTOTIC EXPANSION OF AN INTEGRAL 

In this section we compute the asymptotic expansion as T -X oc of the fol- 
lowing integral, which is needed for the derivation of our error estimates: 

fP+ Tf(p) 
(93) I=] e cos(Tg(p) + 0(p))Ih(p) dp. 

The assumptions we will make are: 

Assumption 6. (a) The function f attains a global maximum at Po E (P-E P+) 
and is thrice continuously differentiable in a neighborhood of po with f"(po) 
# 0. 

(b) The function g is twice continuously differentiable in a neighborhood of 
po and g'(po) : 0 . 

(c) The function h is bounded outside a neighborhood of po, and near 
p = po satisfies 

(94) h(p) = ho(p-po)m + h, (p-po)m+l(1 + O(p -po)), 
where ho # 0 and, if m is odd, 

(95) h, - (m + 2)ho f # ,p0 0. 
03f"'(p0) 

(d) The function 0 is continuous in a neighborhood of po. 
(e) If pi = ?oc, then f(p) -x -00 at least algebraically as IPI -X 00. 

The smoothness and decay conditions can be relaxed somewhat. If m is 
odd and (95) does not hold, we must simply consider higher-order terms in the 
expansion of f and h. 

Despite its apparent simplicity, this integral does not seem to be discussed 
in the standard references. Because of the presence of the oscillatory term, 
Laplace's method cannot be directly applied. Intuitively, we expect to obtain 
the dominant behavior by replacing I cos(Tg + 6)1 by its mean value. This is 
established in the following theorem. Although we have been able to estimate 
the contribution of the oscillatory terms, we have been unable to compute it to 
leading order for general f and g . 
Theorem 2. If Assumption 6 holds, then as T -X 00, 

(96) I ~ 2KmeTf(Po) (Tf" Po) 2(Ym 

where 

(97) y (m + 1)/2, m even, 

(98) Km ho - m even, 
h,1 h- (m + 2)h0f4"(p0)/3f"'(p0), m odd. 
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Proof. We begin by replacing I COS(Tg + 0)1 by its Fourier series: 

2 00 
(99) ICOSOI cos = + E cn cos 2n6, 

n=1 

4 (-l)n+ 
(100) Cn= 7r42 

As the series converges uniformly, I may be expressed as the sum of integrals: 

P+ 2 Tf(p 
~~00 

(101) I=] ?eTJ()h(p) dp + CnI 
n= 

where 

(102) In = f e cos(2n(Tg(p) + 0 (p)))h (p) dp. 

The asymptotic expansion of the first integral follows directly from the use 
of Laplace's method and yields the results stated in the theorem [18]. What 
remains is to show that the contribution of the oscillatory integrals is of lower 
order. Therefore, we consider the asymptotic analysis of In . 

In the usual way we restrict the integral to a small, fixed interval about pO, 
introducing an error which is exponentially small. Using the fact that g'(po) # 
0, we are able to make a change of variables so that the remaining integral 
becomes 

(103) e'I(Jo) f e cos(nTu)H(u, T) du, 
lul<e 

where 

(104) F(u) =F2u2 + F3u3+ o(u3), F2 > 0 

and 

(105) H(u, T) = H(u)(1 + O(1/T)), 

(106) H(U) = Houm + HI um+l + o(um+l) HO $0. 

We break this integral into two parts, 

(107) I e =e (In + In') 

(108) In = e cos(nTU)Houm du, 

(109) I' = f e cos(nTu)A(u, T) du. 

Here we have 

(110) A(U, T) =(e-(F(u>F2U) - 1)H(u, T) + (H(u, T) - HOu) 
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*The asymptotic analysis of I,, may be carried out using the method of steepest 
descent. The exponent has a single critical point at u = in/2F2, leading to an 
exponentially small contribution. To estimate In2 we first rewrite A: 

(111) A(U, T) = TU m+31(U, T) + Um+ 2(U, T), 

where 6, and 62 are bounded functions. Introducing the change of variables 

(112) v = -rF u, 

we obtain 
2 -(m+2)/2 e~ 2 cos( ( 

(113) (v m+3 d1(v, T) +v +ld2(v, T))dv. 

Here, d1 and d2 are uniformly bounded and vi = jViT2e. For convenience 
we extend the domain of integration to the entire real line, extending d1 and d2 
so that they remain uniformly bounded. As the integrand is absolutely integrable 
on the entire real line, uniformly in T, the additional term is O(T-(m+2)I2). 
To estimate the remaining integral, we essentially use the Riemann-Lebesgue 
lemma, modified to take account of the dependence of the nonoscillatory terms 
on T. We have 

(114) In2 = (m+2)/2I3 +((m+2)/2) 

where, following the usual transformation, 

(115) In' = 2 G(v, T) - G v + 2- T))cos ynv dv. 

Here, G is given by 

-V2 m+ m+1 
(116) G(v, T) = e (v d(v, T)+V d2(v, T)). 

Again, G is absolutely integrable, uniformly in T, so we need only show that 

(117) l (G(v, T) - G v + 42 T) )= . 

Making use of the fact that for fixed v the limit 'T -+ 0 implies u -O 0, we 
have 

F (e-v2(F(u)/F2U2_1) 
(118) limnd (V ,T) =VlM2 -e1) H(u, T) = -F Ho 

and 

(19) rlim d2(v, T) = lim (H(u)(1 + (u2)) -Houm) (119) T-lim U -r) =H 
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3 _ From these we may conclude that (1 17) holds and, therefore, that lim_O In= 
0. We have shown, then, that I2 = O(T (m+2)/2). This, in turn, implies 

(120) In = o(eTf(Po) -(m+2)/2) T - oc. 

As the bounds obtained above may be made independent of n, we conclude 
that the contribution of the oscillatory terms is dominated by the contribution 
of the first term in the Fourier series, completing the proof of the theorem. o 

It should be noted that we have not computed the leading order asymptotics 
of In. One might at first glance expect that In determines the leading order 
behavior. We have, however, shown that it is exponentially small, while the 
bounds obtained for the remaining terms decay algebraically. 
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